
CUADERNO DE TRABAJO MATEMÁTICAS 2°

PRIMER TRIMESTRE

ALUMNO:		
GRUPO:		

NÚMERO

RMINA Y USA LOŞ CRITERIOS DE DIVISIBILIDAD Y LOS NÚMEROS PRIMOS.

Un número es divisible entre otro cuando el cociente es exacto.

DIVISIBILIDAD ENTRE 2:

638 es divisible entre 2 por terminar en cifra par.

Un número es divisible entre 2 cuando termina en 0 o en cifra par.

DIVISIBILIDAD ENTRE 3:

124 372 es divisible entre 3, 3 372 porque: 3+7+2= 12 y 12 es múltiplo de 3.

26

489 1 467 es divisible entre 3 3 1467 porque 1+4+6+7= 18 y 18 es múltiplo de 3.

27

Un número es divisible entre 3, cuando la suma de los valores absolutos de sus cifras es múltiplo de 3.

DIVISIBILIDAD ENTRE 5:

119 595 es divisible entre 5 por terminar en 5. 5 595 09

45 0

Un número es divisible entre 5 cuando termina en cero o en cinco.

1. Utiliza los criterios de divisibilidad y completa la siguiente tabla:

Número	Div	isibilidad e	ntre
The state of the s	2	3	5
a) 120	si	si	si
b) 175	no	no	si
c) 180		p00750	*
d) 225		THE TOTAL STATE OF THE PROPERTY OF THE PROPERT	/
e) 447		HI (Mille Samme across responses to the second as second as a seco	An-managaman embara terrecome en en anticontil en diffes
f) 616	The second secon		A A THURSDAY & A STATE OF A A A A A A A A A A A A A A A A A A
g) 720		/	
h) 861		/	MANAGER COMMON STREET,
i) 1 056	en e	,	
j) 1 100	TO THE THE PROPERTY OF THE PRO	***************************************	**************************************
k) 2 585	TO PROPERTY WOOD OF STATE STATE AND STATE AS A STATE AS		an anniques po y minimo de la minimo de construir en redicionis (15 per miljar));
l) 3 048	TO COMPANY TO THE STATE OF THE	inter in time the embers of the embers of the embedding in the embers of the embedding in t	vaneema naeema
m) 6 480	The second secon		s.
n) 7 412			ACCARONISCIPA e Levent de servicio e e e e e e e e e e e e e e e e e e e
ñ) 8 924	***************************************	**************************************	MACHINIAN AND AND AND AND AND AND AND AND AND A

ENTRE NÚMEROS PRIMOS Y COMPUESTOS

Observa los divisores de los siguientes números:

Divisores de 1: 1 (un sólo divisor)

Divisores de 2: 1 y 2 Divisores de 3: 1 y 3

Divisores de 5: 1 y 5

Sólo dos divisores: el 1 y el mismo número.

El numero 1 admite un sólo divisor

y recibe el nombre de <mark>unitario</mark>.

Divisores de 4: 1, 2 y 4

Divisores de 6: 1, 2, 3 y 6

más de dos divisores

Divisores de 8: 1, 2, 4 y 8

Los números que admiten más de dos divisores reciben el nombre de números compuestos.

se llaman números primos.

Los números que sólo admiten dos divisores

1. Para reconocer a todos los números primos que existen entre el 1 y el 100 empleamos la Criba de Eratóstenes, tachando los números que no son primos:

Estrategia:

- a) Tachamos el número 1.
- b) Tachamos los múltiplos de 2, excepto el 2.
- c) Tachamos los múltiplos de 3, excepto el 3.
- d) Tachamos los múltiplos de 5, excepto el 5.
- e) Tachamos los múltiplos de 7, excepto el 7.

1	2	3	4	5	∕6	7	8	Æ	. 10
11	12	~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		16	Y-1000000000000000000000000000000000000	,18	19	<i>.</i> 20
.21	22	23	24	25	<i>2</i> 6	27	.2 g	29	.3ઇ
31	32	23	34	.25	.36	37	.38	.39	<i>4</i> 0
41	42	43	44	45	46	47	48	49	<i>5</i> 0
51	52	53	.54	<i>5</i> 5	<i>5</i> 6	51	58	59	<i>.</i> €0
61	62	63	.64	<i>.</i> 65	<i>.</i> 86	67	.68	,69	.70
71	72	73	74	<i>7</i> 5	76	71	78	79	.&∀
,81	,82	83	<i>8</i> 4	& 5	.8€	287	288	89	ঞ
.91	.92	93	94	.25	.96	97	.98	.99	100

- 2. Los números primos del 1 al 100 son los siguientes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97
- 3. Anota en el recuadro V si la afirmación es verdadera o F si es falsa.

	a) Un número primo sólo admite dos divisores.
	b) 89 es un número primo
	c) El número que sólo admite un divisor es el unitario.
	d) 87 es un número primo.
The second secon	e) Los números compuestos tienen más de dos divisores.
Accession of the Control of the Cont	f) 51 y 72 son números compuestos.
00(0400)pm=1-0400m2	g) 93 y 57 son números primos.
	h) Todos los números primos son impares.
	i) 79 es un número primo.
	j) Los números primos comprendidos del 1 al 100 son 25.
2	

08

ÚMERO

s: el 1 o.

ores

ores s.

,10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 ,100

7, 41, 89 y 97

RESOLUCIÓN DE PROBLEMAS QUE IMPLIQUEN EL CÁLCULO DEL MÁXIMO COMÚN DIVISOR (MCD) Y EL MÍNIMO COMÚN MÚLTIPLO (mcm)

MÁXIMO COMÚN DIVISOR (MCD)

Los divisores de 18 son: 1, 2, 3, 6, 9 y 18. Los divisores de 27 son: 1, 3, 9 y 27.

Los divisores que tienen en común 18 y 27 son: 1, 3 y 9. El 9 por ser el mayor divisor recibe el nombre de máximo común divisor (MCD).

El máximo común divisor de dos o más números es el mayor de sus divisores comunes.

Para calcular el máximo común divisor, procedemos de la siguiente forma:

Calcular el MCD de 24 y 36.

Proceso mental: el número 24 no es divisor de 36, pero su mitad 12 si es divisor de 24 y 36, por lo cual el MCD de 24 y 36 es el 12.

1) Calcula mentalmente el máximo común divisor de los siguientes números.

a) MCD (6, 12)=	b) MCD (18, 9)=
c) MGD (14, 7)=	d) MCD (10, 20)=
e) MCD (9, 12)=	f) MCD (15, 10)=
g) MCD (12, 18)=	h) MCD (16, 12)=
i) MCD (24, 16)=	j) MCD (18, 24)=
k) MCD (8, 12, 16)=	I) MCD (9, 12, 18)=
m) MCD (10, 30, 20)=	n) MCD (12, 20, 30)=
o) MCD (30, 20, 15)=	p) MCD (10, 20, 40)=
q) MCD (20, 30, 40)=	r) MCD (12, 24, 36)=
s) MCD (36, 18, 12)=	t) MCD (14, 56, 28)=

Otro procedimiento para calcular el MCD consiste en obtener sus factores primos.

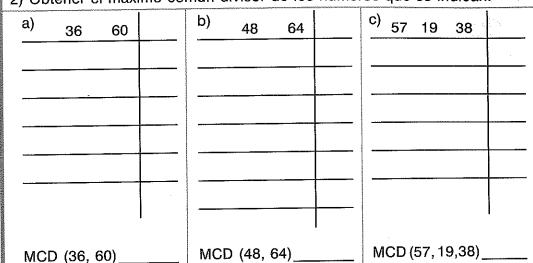
Calcular el MCD de 12, 18 y 30.

12	18	30	2
6	9	15	2
3	9	15	(3)
1	3	5	3
1	1	5	5
1	1	1	

- a) Ambos son divisibles entre 2.
- b) Volvemos a dividir entre 2; como el 9 y el 15 no tienen mitad se bajan al siguiente renglón.
- c) Ambos son divisibles entre 3.
- d) Volvemos a dividir entre 3; como 5 no es divisible entre 3 se baja.
- e) 5 es divisible entre 5.
- f) Cuando el cociente de todos los números es 1, el proceso se termina.

Para Obtener el MCD sólo usamos los factores primos comunes a 12, 18 y 30. (El②del inciso a) y el③ del inciso c), por lo tanto:

MCD (12, 18, 30): 2 X 3 = 6


60

36 24

MCD (36, 24, 60)

MÁXIMO COMÚN DIVISOR (MCD)

2) Obtener el máximo común divisor de los números que se indican.

MÍNIMO COMÚN MÚLTIPLO (mcm)

Múltiplos de 2 mayores que 0: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,...

Múltiplos de 3 mayores que 0: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30,...

Algunos múltiplos comunes de 2 y 3 mayores que 0 son: 6, 12, 18, 24 y 30. El menor de ellos es el 6 y recibe el nombre de **mínimo común múltiplo.**

Para calcular mentalmente el mínimo común múltiplo lo hacemos así:

Calcula el mcm de 12 y 18.

Proceso mental: el número mayor que es 18 no es divisible entre 12, pero su doble que es 36, si es divisible entre 12 y entre 18, por lo tanto el mínimo común múltiplo de 12 y 18 es el 36.

Mínimo común múltiplo (mcm) de dos o más números es el menor de sus múltiplos comunes.

1) Calcula mentalmente el mínimo común múltiplo de los siguientes números.

1) Galodia montani	
a) mcm (3, 6) =	
c) mcm(4,9)=	
e) mcm (8, 12)=	
g) mcm (7,21)=	
i) mcm (3, 20) =	
k) mcm (20, 30)=	
m) mcm (2, 3, 4) =	
o) mcm (3, 6, 9)=	
q) mcm (4, 6, 12)=	
s) mcm (4, 6, 9) =	

b) mcm (5, 10) =
d) mcm (6, 9) =
f) mcm (6, 15) =
h) mcm (6, 8) =
j) mcm (12, 18) =
l) mcm (10, 15) =
n) mcm (2, 4, 5) =
p) mcm (3, 5, 6) =
r) mcm (2, 5, 6) =
t) mcm (5, 8, 10) =

ÚMERO

mo

MÍNIMO COMÚN MÚLTIPLO (mcm)

También podemos calcular el mínimo común múltiplo obteniendo sus factores primos.

Calcular el mcm de 12 y 18.

12	18	2
6	9	2
3	9	3
1	3	3
1	1	

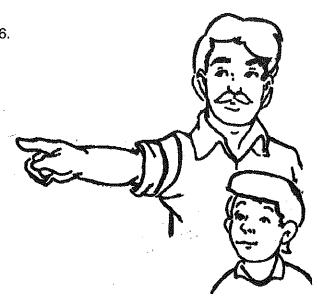
- a) Ambos son divisibles entre 2.
- b) Volvemos a dividir entre 2, como el 9 no tiene mitad se baja al siguiente renglón.
- c) Ambos son divisibles entre 3.
- d) Volvemos a dividir entre 3.
- e) Cuando el cociente de todos los números es 1 se termina el proceso.

Para Obtener el mcm usamos todos los factores primos.

$$mcm (12, 18) = 2 \times 2 \times 3 \times 3 = 36$$

2. Calcula el mínimo común múltiplo de los siguientes números.

a) _	8 12	_ b)	16 24	c)12 30
		_		
		_		
-				
		P or the second		
	mcm (8, 12)	THE THE PARTY OF T	mcm (16, 24)	mcm (12, 30)
d) 	4 5 6	e) _	8 16 24	f) 25 40 50
		- Constitution of the Cons		
		_	:	
		-		
		-		
The second distance of	mcm (4, 5, 6)		mcm (8, 16, 24)	mcm (25, 40, 50)


RESOLUCIÓN DE PROBLEMAS QUE IMPLIQUEN EL CÁLCULO DEL MÁXIMO COMÚN DIVISOR Y EL MÍNIMO COMÚN MÚLTIPLO

- 1. Un profesor atiende dos cursos, uno de 48 alumnos y el otro de 36 alumnos, desea distribuir a los alumnos en grupos idénticos en número en cada uno de los cursos y que los grupos sean lo más numerosos. ¿Cuántos grupos y de cuántos alumnos tendrá en cada curso?
- a) Como se habla de que los grupos sean lo más numerosos posible, calculamos el MCD de 48 y 36.

48	36	2
24	18	2
12	9	2
6	9	2
3	9	3
1	3	3
1	1	

$$MCD(48, 36) = 2 X 2 X 3 = 12$$

b) Lo más numeroso posible es de 12 alumnos por grupo, por lo que dividimos 48 y 36 entre 12.

RESULTADO: En un curso 4 grupos de 12 alumnos y en el otro curso 3 grupos de 12 alumnos.

2. Dos atletas corren diariamente a la misma hora, el 1º tarda 12 minutos y el 2º 16 minutos en dar una vuelta a su campo de entrenamiento. ¿Cuántas vueltas dará cada uno para que vuelvan a coincidir en el punto de partida?

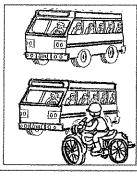
a) Como se pregunta en qué vuelta coincidirán, calculamos el mcm de 12 y 16.

12	16	2
6_	8	2
3	4	2
3	2	2
3	1	3
1	1	

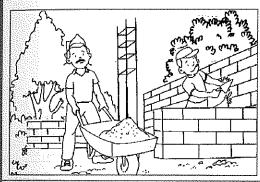
 b) Si tardan 48 minutos para que vuelvan a coincidir, entonces dividimos 48 entre 12 y entre 16 para saber el número de vueltas.

mcm(12, 16) = 2X2X2x2x3 = 48

RESULTADOS

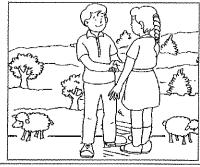

El primer atleta dará 4 vueltas. El segundo atleta dará 3 vueltas.

ımnos rosos.


PROBLEMAS QUE IMPLICAN EL mcm Y EL MCD

Resuelve los siguientes problemas aplicando el máximo común divisor o el minimo común múltiplo:

a) Dos autobuses de la Ruta 100 salen de su base a las 5 horas; el primero regresa 120 minutos después y el segundo 180 minutos después, tiempo que utilizan para su recorrido. ¿A qué hora volverán a coincidir en su salida de la base?



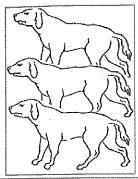
b) Un albañil va a cortar varillas de 1 200 cm y de 900 cm en partes iguales y que tengan la mayor longitud. ¿De cuántos centímetros debe cortar cada pedazo sin que desperdicie material?

c) Lupita vende camisas a \$ 120 cada una y Carlos vende pantalones a \$ 180 cada uno. Cierto día decidieron cambiar parte de su mercancía con la condición de que ninguno perdiera. ¿Cuántas camisas y cuántos

pantalones intercambiaron?

d) Un salón de fiestas tiene mesas para 6 personas, para 8 personas y para 10 personas y de esta manera acomodan a 360 invitados. ¿Cuantas mesas hay para 6 personas?, ¿cuántas para 8 personas?,¿cuántas para 10 personas? y ¿cuántas mesas son en total?

saber

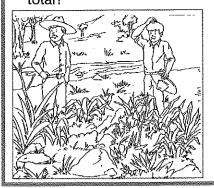

uelta a

nto de

in,

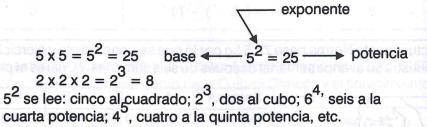
PROBLEMAS QUE IMPLICAN EL mcm Y EL MCD

e) Tres galgos compiten en una carrera, el primero tarda 40 segundos en dar una vuelta a la pista, el segundo tarda 50 segundos y el tercero 60 segundos. ¿Cuántas vueltas debe dar cada uno para que vuelvan a coincidir en el punto de salida?


f) Pedro tiene tambos con aceite de 72 litros, y de 104 litros para vender el aceite en garrafas con la misma capacidad, si desea la mayor capacidad posible. ¿Cuántos litros contiene cada garrafa? y ¿cuántas garrafas son en total?

g) Tres atletas inician su entrenamiento a las 6 horas, el primero recorre la pista en 12 minutos, el segundo recorre la pista en 15 minutos y el tercero recorre la pista en 20 minutos. ¿A qué hora volverán a coincidir los tres atletas en el lugar de inicio?, ¿cuántas vueltas ha dado a la pista el primer atleta?, ¿cuántas el segundo atleta? y ¿cuántas el tercer atleta?

h) Se van a fraccionar tres terrenos de 540 m², 720 m² y 900 m² respectivamente, y se desea que el área de cada lote sea la mayor posible. ¿Cuántos metros cuadrados debe medir cada lote? y ¿cuántos lotes son en total?


PROBLEMAS MULTIPLICATIVOS

RESOLUCIÓN DE PROBLEMAS QUE IMPLIQUEN EL CÁLCULO DE LA RAÍZ CUADRADA (DIFERENTES MÉTODOS) Y LA POTENCIA DE EXPONENTE NATURAL DE NÚMEROS NATURALES Y DECIMALES.

POTENCIACIÓN

La notación exponencial sirve para abreviar un producto y consta de dos elementos, la <u>base</u> y el <u>exponente</u>.

1. Encuentra la po	otencia.	2. Anota el valor de la base.
a) $4^2 = 4 \times 4 = 16$	3	a) $x^2 = 81$ $x = 9$
b) 3 ³ =		b) $a^3 = 8$ $a =$
c) 2 ⁴ =	ntes de puestra era y an el nño de 1	c) $m^2 = 16$ $m = 100$
d) $6^2 =$	remainiem of the control of the control of	d) $h^3 = 27$ h =
e) 1 ⁵ =		e) $y^2 = 9$
f) $9^2 =$		f) $b^3 = 125$ b =
g) $0.5^2 = 0.5 \times 0.5$	5 = 0.25	g) $f^2 = 0.09$ $f = 0.3$
h) 0.6 ² =	© 3	h) $a^2 = 0.04$ a =
i) 0.07 ² =	es la shessa enemas el is 1003 \ 2	i) $b^2 = 0.16$ b =
$j)_{0.08}^2 =$	pués bala 17 plans Juago suba	j) $n^2 = 0.49$ n =
3. Anota el valor d	el exponente.	4. Expresa con notación exponencial.
a) 9 ^X = 81	x = 2	a) $1000000 = 10^6$
b) 3 ^m = 27	m =	b) 10 =
c) 4 ⁿ = 16	n =	c) 10 000 =
d) $2^{b} = 8$	b =	d) 100 000 000 =
e) 7 ^y = 49	us y <u>a</u>teuros acteros scas ao actos ta Tarada termocratura fue de 22°C, 28	e) 1 =
f) 5 ^h = 125	0 h = 08:30 8:30 = h 0	f) 100 000 = H
g) $0.9^{X} = 0.81$	x = 2	g) 1 000 =
h) $0.6^{y} = 0.36$	y =	h) 10 000 000 =
i) $0.2^{\text{m}} = 0.008$	m =	i) 100 =
$j) 0.8^{W} = 0.64$	w =	j) 1 000 000 000 =

RESUELVE PROBLEMAS DE POTENCIAS CON EXPONENTE ENTERO Y APROXIMA RAÍCES CUADRADAS

Observa las veces que la base se repite como factor:

$$x^3 x^4 = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$$
 $x^{3+4} = x^7$ $x^3 x^4 = x^7$

$$x^{3+4} = x^7$$
 $x^3 x^4 = x^7$

$$y^2 y^6 = y \cdot y = y^{2+6} = y^8$$
 $y^2 y^6 = y^8$

$$a^2 a^3 a = a \cdot a \cdot a \cdot a \cdot a \cdot a$$

$$a^{2} a^{3} a = a \cdot a^{2+3+1} = a^{6}$$
 $a^{2} a^{3} a = a^{6}$

El producto de potencia de la misma base es igual a esa base y el exponente es la suma de los exponentes de los factores.

Por lo tanto: $x^m x^n = x^{m+n}$

1. Calcula el producto de las potencias:

a) m ³ m ⁶ =	b) f ⁵ f ⁵ =	c) a ² a ⁸ =	
d) x ⁵ x =	e) $y^2 y^3 y^2 =$	f) $w^6 w^4 w =$	
g) h ⁴ h ⁵ h ² =	h) $b^2 b^7 b^3 =$	i) $d^3 d^2 d^4 =$	
j) t t ³ t ⁵ =	k) $a^2 b^3 a^4 b^2 =$	I) $x^3 y^2 xy^2 =$	
m) m ² n ⁴ mn =	n) $k^3 h^4 h^2 k^3 =$	o) $w^3 z w^2 z^5 =$	
p) $a^2 a^6 b^3 b^4 =$	q) $x^2 y^3 z^4 x^3 yz^2 =$	r) abc ³ a ² b ³ c ⁴ =	
s) f ³ ghf ² g ³ h ² =	t) $p^2 q^3 r^2 r^3 q^3 p^5 =$	u) $a^4 b^3 c^2 a^3 b^2 c =$	

POTENCIAS DE UNA POTENCIA

De acuerdo al concepto de exponente:

$$(a^2)^3 = a^2 \cdot a^2 \cdot a^2 = a^2 \times 3 = a^6$$

$$(a^2)^3 = a^6$$

$$(x^3)^4 = x^3 \cdot x^3 \cdot x^3 \cdot x^3 \cdot x^3 = x^{3 \times 4} = x^{12} \longrightarrow (x^3)^4 = x^{12}$$

$$(y^5)^2 = y^5 \cdot y^5 = y^{5x2} = y^{10}$$

$$-(y^5)^2 = y^{10}$$

La potencia de otra potencia es igual a la misma base y su exponente es igual al producto de las exponentes.

Por lo tanto: $(x^m)^n = x^{mn}$

1. Calcula el producto de las potencias:

a) $(x^4)^3 =$	b) $(b^2)^2 =$	c) $(m^5)^2 =$

d)
$$(h^3)^3 =$$
 e) $(a^2)^3 =$ f) $(b^5)^3 =$

g)
$$(y^4)^2 =$$
 h) $(t^2)^5 =$ i) $(k^3)^4 =$

j)
$$(n^5)^4 =$$
 k) $(w^6)^2 =$ l) $(z^2)^7 =$

Anota el valor del exponente en cada caso:

a)
$$(x^m)^4 = x^8$$
 $m =$ b) $(k^n)^3 = k^9$ $n =$ c) $(y^n)^2 = y^{10}$ $n =$ d) $(a^5)^m = a^{20}$ $m =$ e) $(h^2)^m = h^{12}$ $m =$ f) $(b^3)^n = b^{12}$ $n =$

POTENCIAS DE UN PRODUCTO

Observa el desarrollo de las siguientes operaciones:

$$(x^2 y^3)^2 = x^2 y^3 \cdot x^2 y^3 = x^4 y^6$$

$$(x^2y^3)^2 = x^4y^6$$

$$(a^4 b^5)^3 = a^4 b^5 \cdot a^4 b^5 \cdot a^4 b^5 = a^{12} b^{15} \longrightarrow (a^4 b^5)^3 = a^{12} b^{15}$$

$$(a^4 b^5)^3 = a^{12} b^{15}$$

$$(f^3 h^4 k^2)^2 = f^3 h^4 k^2 \cdot f^3 h^4 k^2 = f^6 h^8 k^4 \longrightarrow (f^3 h^4 k^2)^2 = f^6 h^8 k^4$$

$$(f^3 h^4 k^2)^2 = f^6 h^8 k^4$$

La potencia de un producto equivale a elevar cada uno de los factores a la potencia indicada.

Por lo tanto: $(a^m b^n)^X = a^{mx} b^{nx}$

1. Calcula el producto de las potencias:

a)
$$(x y^4)^2 =$$

b)
$$(a^2 b^3)^3 =$$

c)
$$(bd^2)^4 =$$

d)
$$(h^5 k^3)^2 =$$

e)
$$(w^4 z^2)^3 =$$

$$(p^3 q^2)^5 =$$

g)
$$(m^6 n^3)^2 =$$

h)
$$(e^4 f)^4 =$$

$$(r^2 t^3)^5 =$$

i)
$$(c^3 d^4)^3 =$$

k)
$$(ab^2 c^3)^2 =$$

)
$$(d^2 e^4 f)^4 =$$

m)
$$(x^2 y^4 z)^3 = 1$$

k)
$$(ab^2 c^3)^2 =$$

n) $(r^5 s^4 t^3)^2 =$

o)
$$(k^2 l^3 m^4)^3 =$$

p)
$$(f^2 gh^4)^4 =$$

q)
$$(x^4 y^3 z)^5 =$$

r)
$$(p^6 q^2 r^4)^2 =$$

s)
$$(d^3 e^2 f)^4 =$$

t)
$$(r^2 s^3 t^4)^3 =$$

u)
$$(a^7b^8c^9)^4 =$$

COCIENTE DE POTENCIAS

Observa el número de factores que se encuentran en el dividendo y en el divisor:

$$\frac{x^5}{x^2} = \frac{x \times x \times x}{x \times x} = \frac{x \times x \times x}{x \times x} = x^{5-2} = x^3 \longrightarrow \boxed{\frac{x^5}{x^2} = x^3}$$

$$\frac{a^4}{a} = \frac{a a a a}{a} = \cancel{a} (a a a) = a^4 = a^3 \qquad \qquad \boxed{\frac{a^4}{a} = a^3}$$

$$\frac{y^5}{y^4} = \frac{y \cdot y \cdot y \cdot y}{y \cdot y \cdot y} = \frac{y \cdot y \cdot y \cdot y}{y \cdot y \cdot y \cdot y} = y^{5-4} = y \qquad \Longrightarrow \qquad \frac{y^5}{y^4} = y$$

En la división de potencias de la misma base, el cociente se obtiene anotando esa base y el exponente es igual a la resta del exponente del dividendo menos el exponente del divisor.

Por lo tanto:
$$\frac{a^m}{a^n} = a^{m-n}$$

1. Calcula el cociente de las potencias:

a)
$$\frac{m^6}{m^3} =$$

b)
$$\frac{b^7}{b^2} =$$

c)
$$\frac{k^8}{k^4} =$$

d)
$$\frac{\chi^{10}}{\chi^9} =$$

e)
$$\frac{a^5}{a}$$
 =

f)
$$\frac{d^4}{d^2}$$
 =

9)
$$\frac{s^9}{s^6} =$$

h)
$$\frac{t^8}{t^2} =$$

i)
$$\frac{r^{12}}{r^{10}} =$$

j)
$$\frac{z^6}{z^5} =$$

k)
$$\frac{h^{11}}{h^6} =$$

$$I) \quad \frac{w^5}{w^3} =$$

m)
$$\frac{f^7}{f^4}$$
 =

n)
$$\frac{y^9}{v^5} =$$

$$\tilde{n}$$
) $\frac{e^{10}}{e^2}$ =

POTENCIA DE EXPONENTE CERO

$$\frac{2^3}{2^3} = 2^{3-3} = 2^0$$

y también:
$$\frac{2^3}{2^3} = \frac{2 \times 2 \times 2}{2 \times 2 \times 2} = \frac{8}{8} = 1$$
 y: $\frac{x^2}{x^2} = \frac{x}{x} \cdot \frac{x}{x} = 1 \times 1 = 1$

entonces:
$$2^0 = 1$$

Si: $\frac{x^2}{x^2} = x^{2-2} = x^0$

y:
$$\frac{x^2}{x^2} = \frac{x}{x} \cdot \frac{x}{x} = 1 \times 1 = 1$$

entonces: $x^0 = 1$

Todo número diferente de cero, con exponente cero es igual a la unidad.

Por lo tanto : $a^0 = 1$

Calcula el cociente de potencias:

a)
$$\frac{x^8}{x^8} =$$

b)
$$\frac{y^5}{v^5} =$$

$$\frac{y^5}{y^5}$$
=

c)
$$\frac{a^7}{a^7} =$$

e)
$$\frac{n^6}{n^6}$$
=

f)
$$\frac{f^4}{f^4} =$$

g)
$$\frac{b^2}{b^2}$$
 =

h)
$$\frac{k^9}{k^9} =$$

i)
$$\frac{w^{10}}{w^{10}} =$$

Completa las siguientes operaciones:

a)
$$\frac{h^3}{h^3} = h^{3-3} = \boxed{ } = 1$$

b)
$$\frac{d^5}{d^5} = d^{5-5} = d^0 =$$

d)
$$\frac{a^4}{a^4}$$
 =

POTENCIA DE EXPONENTE NEGATIVO

c) $\frac{x^2}{x^2} =$

Como:
$$\frac{2^3}{2^5} = 2^{3-5} = 2^{-2}$$

Como:
$$\frac{x}{x^4} = x^{1-4} = x^{-3}$$

$$\frac{2^3}{2^5} = \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2^2}$$

y también: $\frac{2^3}{2^5} = \frac{\cancel{Z}}{\cancel{Z}} \cdot \frac{\cancel{Z}}{\cancel{Z}} \cdot \frac{\cancel{Z}}{\cancel{Z}} \cdot \frac{1}{\cancel{Z}} \cdot \frac{1}{\cancel{Z}} = \frac{1}{2^2}$ y también: $\frac{x}{x^4} = \frac{\cancel{X}}{\cancel{X}} \cdot \frac{1}{\cancel{X}} \cdot \frac{1}{\cancel{X}} \cdot \frac{1}{\cancel{X}} = \frac{1}{x^3}$

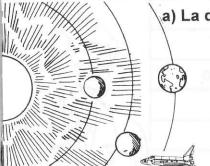
entonces: $2^{-2} = \frac{1}{2^2}$

entonces: $x^{-3} = \frac{1}{\sqrt{3}}$

Todo número con exponente negativo es igual a una fracción, donde el numerador es la unidad y el denominador es el mismo número con exponente positivo.

Por lo tanto : $a^{-n} = \frac{1}{a^n}$

1) Escribe en forma de fracción las siguientes potencias


t-6 =

g)
$$a^{-1} =$$

$$q^{-4} =$$

NOTACIÓN CIENTÍFICA

La notación científica es la notación exponencial expresada como producto de dos factores. En el primer factor el punto decimal se coloca después de la primera cifra significativa, el segundo factor es una potencia de 10. Ejemplos:



a) La distancia aproximada del Sol a la Tierra es de 150 000 000 km.

150 000 000 = 1.5 x 108

El punto decimal se anota después de la primera cifra significativa.

El punto se recorrió 8 cifras a la izquierda entonces el exponente es 8.

b) Un virus cuya longitud aproximada es de 0.0000023 mm sólo puede ser observado con un microscopio electrónico.

 $0.0000023 = 2.3 \times 10^{-6}$

El punto decimal se anota después de la primera cifra significativa.

El punto se recorrió 6 cifras a la derecha, entonces el exponente es -6.

1. Escribe los siguientes números en notación científica.

				796				100
a)	568	000	=	5.68 x 10 ⁵	b)	0.0086	= 8.6 x 10 ⁻⁴	
c) 1	000	000	=	que se indica	d)	0.00027	=	
e)	43	000	=	Of the book	f)	0.019	DEX OF X BY X OF	e Corpu
g) 75	000	000	=		h)	0.000006	=	= 5 01 (8
i) 2 000	000	000	=		j)	0.4	=	= ³⁻ 00 (o -
k) 601	000	000	=		I)	0.0000095	=	e ^e or (a
n) 10	-	000	=		n)	0.345	=	6) - 0) (8
0)		000	=	cúblicos hay en un muuro	p)	0.00000000	71 =	no iso iso. a Odom
q) 88 00	0 000	000	=		r)	0.000064	=	
32	000	000	=		t)	0.00000008	=	

	2. Anota el número que corre	sponde a c	ada notación científica.	ِ المار
a) 3.7	\times 10 2 = 370	b) 5.2	$x 10^{-3} = 0.0052$	
c) 2.9	x 10 ° =	d) 6	x 10 ⁻² =	
e) 8	x 10 ⁴ =	f) 1.4	x 10 ⁻⁵ =	
g) 5.14	x 10 ⁶ =	h) 7.08	x 10 ⁻¹ =	1
i) 4.9	x 10 ¹ =	j) 1.2	x 10 ⁻⁶ =	h
k) 6	x 10 ⁷ =	1) 8	x 10 ⁻⁸ =	
m) 1.3	x 10 ⁹ =	n) 2.5	x 10 ⁻⁴ =	Ĭ
0) 7	x 10 ³ =	p) 3.6	x 10 ⁻⁷ =	
q) 9.132	x 10 ⁸ =	r) 4.52	x 10 ⁻⁹ =	
s) 2.48	x 10 ¹⁰ =	t) 9.8	x 10 ⁻¹⁰ =	-2 ()

3. Expresa las siguientes magnitudes en notación científica.

- a) La distancia aproximada de la Tierra a la Luna es de 384 000 kilómetros.
- b) El océano Pacífico tiene una extensión de aproximadamente 167 000 000 km²,
- c) El Sistema Solar se originó hace 5 000 000 000 de años, aproximadamente.
- d) La vida terrestre se originó hace 4 000 000 000 de años aproximadamente.
- e) La superficie de los océanos es de 361 000 00 km², aproximadamente.
- f) La superficie de la Tierra es de 510 000 000 km², aproximadamente.
- g) El volumen de la Tierra es de 1 083 700 000 000 km³, aproximadamente.
- h) El desierto del Shahara tiene una superficie aproximada de 9 100 000 km².
- 149 000 000 km², aproximadamente.
- i) La superficie de las tierras emergidas es de j) El río Amazonas, en Sudamérica, ocupa una superficie de 7 050 000 km². aproximadamente.

ORDEN DE MAGNITUD

El orden de magnitud de una cantidad es la potencia de 10 en que se expresa ésta en notación científica. Ejemplos:

a) Distancia de la Tierra al Sol = 150 000 000 km = 1.5×10^8 km

Por lo tanto : la distancia de la Tierra al Sol es del orden de 10⁸ km.

a) 27 v 105

b) El cuerpo humano tiene alrededor de : 10 000 000 000 000 000 000 000 000 de átomos

1 x 10²⁸

Luego: el número de átomos del cuerpo humano es del orden de 10²⁸

h) 3 4 v 10-2

1. Determina el orden de magnitud de las siguientes cantidades.

b) 3.4 x 10 ⁻²			
d) 5.9 x 10 ⁻¹³			
f) 8.5 x 10 ¹⁸			
h) 6.3 x 10 ⁻²⁵			
j) 5.4 x 10 ⁻³⁸			
agnitud de las cantidades.			
b) Extensión del océano Pacífico, 167 000 000 km².			
d) La altura del Iztaccíhuati, que es 5 492 m.			
f) La superficie del continente Americano: 42 044 000 km².			
h) Superficie de Canadá: 9 970 000 km²			

rico y pensamiento algebraico	Significado y uso de las opera	a
adecuadas para medir. En Astror con muchas cifras, y en Biología	eccionan unidades especiales para	
UNIDADES ASTRONOMICAS	UNIDADES MICROSCÓPICAS	
Теменодо	μ = micra	
U.A = unidad astronómica	10 ⁻³ mm ó 10 ⁻⁶ m	- F.S.
1.5 x 10 ⁸ km	mµ = milimicra	
	40-3	

9.5 x 10¹² km

10⁻³ mµ ó 10⁻⁶ m Á = angstrom

10⁻⁷ mm

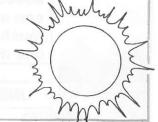
1. Contesta las siguientes preguntas:

a) ¿Cuál es el orden de magnitud de un año luz?

Año Luz

- b) Cuál es la medida que equivale a la milésima de un parte de un milímetro?
- c) ¿Qué medida equivale a la distancia media entre la Tierra y el Sol?
- d) ¿Qué medida equivale a la distancia que recorre la luz en un año?

2. Resuelve los siguientes problemas.

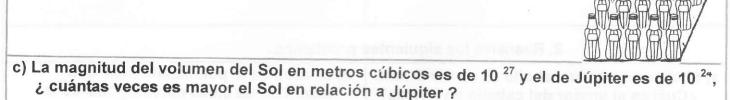

- a) Si el grosor de un cabello es de 0.049 mm. ¿Cuál es el grosor del cabello en micras?
- b) El virus de la polimielitis tiene una magnitud de 0.025 micras,¿Cuál es la magnitud en mm?

- c) Si un asteroide orbita a 1 500 000 000 km del Sol, ¿cuál es la distancia en unidades astronómicas?
- d) Si un cometa pasa a dos años luz de una estrella, ¿cuál es la distancia en kilómetros?

_a magnitud del volumen del Sol, en metros cúbicos es de 10 ²⁷ y el de la Tierra es de 10 ²¹, cuántas Tierras "cabrían" en el Sol?

$$\frac{10^{27}}{10^{21}}$$
 = 10 ^{27 - 21} = 10 ⁶ = 1 000 000

" Cabrían un millón de Tierras "


Recuerda que: para dividir expresiones con la misma base los exponentes se restan.

a) _____ 1. Resuelve los siguientes problemas.

La superficie del fraccionamiento "Paraiso verde" es de 2 ¹⁰ hectáreas y se quiere fraccionar en terrenos de 2 ² hectáreas, ¿ en cuántos terrenos se podrá fraccionar "Paraíso Verde ?

b) En una caja de refrescos caben 5 ⁶ botellas, un trailer de doble remolque transporta 5 ⁶ botellas de refrescos, ¿ cuántas cajas de refrescos transporta ?

d) un angstron es igual a 10 - milímetros, ¿ cuántos angstrons caben un milímetro 10°?

EL AJEDREZ Y LAS POTENCIAS DE 2

Cuenta la leyenda que el Visir Sissa regaló al rey hindú un tablero cuadrado dividido en sesenta y cuatro cuadros o casillas iguales. Sobre este tablero se colocaban dos series de ingeniosas figuras que se repetían simétricamente y había reglas esenciales para mover las piezas de diversas maneras.

Al cabo de pocas horas el monarca, que había aprendido con rapidez todas las reglas del juego, lograba ya derrotar a sus visires en una partida impecable.

Dijo el monarca: quiero recompensarte, amigo Sissa por este maravilloso regalo, dime pues que es lo que deseas.

Nada más sencillo dijo Sissa: me daréis un grano de trigo para la primera casilla del tablero, dos para segunda; cuatro para la tercera; ocho para la cuarta; y así sucesivamente hasta la última casilla del tablero:

-	-	 		-	-	_	
18	2 º	2 ²	2 ³	2 4	2 ⁵	2 ⁶	2 ⁷
	iq ox	ofnhu:) s ft	511	silien	el ne	olbio
di				Blate	ari oh	diper s	ided
					-		
			1 V (L		ull Fee	en la c	
	7						
						N. T	regin mina

1ª. Casilla: 1 grano

2ª. Casilla: 2 granos

3ª. Casilla: 4 granos

4ª. Casilla: 8 granos

y así doblando sucesivamente hasta la última casilla del tablero.

¿Con cuántos granos de trigo pudo el monarca corresponder a la promesa que hizó a Sissa?

El número de granos es 18 446 744 073 709 551 615

Para tener idea de la inmensidad de este número gigante , calculemos aproximadamente la magnitud que debería tener el granero capaz de almacenar semejante can tidad de trigo.

Es sabido que un metro cúbico de trigo contiene cerca de l5 millones de granos. En este caso, la recompensa del inventor del ajedrez debería ocupar un volumen aproximado de l2 000 000 000 000 de metros cúbicos o lo que es lo mismo: 12 000 kilómetros cúbicos.

Si el granero tuviera 4 m de alto y 10 m de ancho, su longitud debería ser de 300 000 000 de kilómetros o sea el doble de la distancia que separa la Tierra del Sol.

El Rey hindú, no podía entregar semejante recompensa.

1. Observa y analiza las potencias en el tabler	o de ajedrez y contesta las preguntas.
a)¿Cuántos granos pidió en la casilla 8?	b)¿Cuántos granos pidió en la casilla 10?
c) ¿ Cuántos granos había recibido hasta la casilla 8?	d) ¿ Cuántos granos había recibido hasta la casilla 10?
e) ¿ Cuántos granos pidió en la casilla 11?	f) ¿ Cuántos granos pidió en la casilla 12?
g) ¿ Cuántos granos había recibido hasta la casilla 11?	h)¿ Cuántos granos había recibido hasta la casilla 12?
i) ¿ Cuántos granos pidió en la casilla 13?	J) ¿ Cuántos granos había recibido hasta la casilla 13?

RADICACIÓN

Obtener la raíz cuadrada de un número es la operación inversa de elevar un número al cuadrado:

$$\sqrt{1}$$
 = 1, porque 1 x 1 = 1

 $\sqrt{4}$ = 2, porque 2 x 2 = 4

 $\sqrt{9}$ = 3, porque 3 x 3 = 9

radical

radical

Se llaman cuadrados perfectos a los números cuya raíz cuadrada es un número natural.

	IRRESEASTA BHASKARA	es un número	T		
1. Completa la cuadrada	tabla de cuadrados	perfectos y la raíz	2. Si un d termina d	cuadrado perfecto en:	Su raíz cuadrada termina en:
a) $5^2 = 25$	6-4=2	$\sqrt{25} = 5$	a)	O Igua	
b) 6 ² =			b)	1	1 o en _9
c) 7 ² =	f		c)	4	o en
d) 8 ² =	V 695 28	9	d)	5	V895 2
e) 9 ² =	-276		e)	6	o en
f) 10 ² =	e f		f)	9	o en
g) 11 ² =	Multiplicamos	tre 4 y el	3. Anota	si la raíz cuadrad	a es exacta
h) 12 ² =	295 - 3/6 = 19	guiente cifra	o aproxii		y duplicarnos envaror de 2 x 2 = 4
i) 13 ² =		7	a) $\sqrt{1}$ e	xacta (1)	
j) 14 ² =	*) · (I		b) $\sqrt{2}$ aproximada (entre 1 y 2)		
k) 15 ² =	896 V	5-0	c) $\sqrt{3}$		295 48
I) 16 ² =	1900	2 3	d) $\sqrt{4}$		19001
m) 17 ² =			e) √8	4	
n) 18 ² =	Agregamos etro puede	16 = 32 - 3	f) √9	Suma Suma Dividir	Si se quiere aproximer a
o) 19 ² =	3 + 523 = 526	no siguiente	g) $\sqrt{14}$	oerfodo Se an	decimal y se agrega un
p) 20 ² =			h) $\sqrt{16}$	D ISTINUTION OF THE STATE OF TH	de uos ceros.
q) 0.5 ² =	l) Efectuamos la co	$\sqrt{0.25} = 0.5$	i) $\sqrt{23}$	g Hilling	230.5
r) 0.9 ² =	26.36	26,36	j) $\sqrt{25}$		88.38 V
s) 0.04 ² =	1 5816	52.3	k) $\sqrt{35}$		1900 523
t) 0.07 ² =	158 16	90 79	I) $\sqrt{36}$		A081
u) 0.08 ² =	527 2 694.8496	usdrada	m) $\sqrt{48}$	n ta Esta	La operación se rapite e
v) 0.005 ² =	1504 (1	ASIA CUTTESTITUS	n) $\sqrt{49}$	(O)QB	bisma ionna axproada amoriormente de e) a f
w) 0.012 ² =			o) $\sqrt{60}$		
1		_	40		Dánina 00 da 00

RAÍZ CUADRADA

Para extraer la raíz cuadrada se procede de la siguiente manera:

f)

i)

a)

b) $\sqrt{695}$ 2

c) \(\sqrt{695} \) 2 \(\frac{-4}{4} \)

Dividimos el subradical en pares de cifras llamados períodos.

Buscamos el mayor número que elevado al cuadrado sea menor o igual a 6: 2 x 2 = 4 y 4 < 6

Restamos a 6 el cuadrado de 2; (2 x 2 = 4). 6 - 4 = 2

d)

e)

\[
\sqrt{695} \frac{26}{26} \]

295 46

 $\begin{array}{c|cccc}
 & 695 & 26 \\
 & 295 & 46 \\
 & -276 & \\
 & 19 & \\
\end{array}$

Bajamos el segundo período (95) y duplicamos el valor de la raíz

$$2 \times 2 = 4$$

Dividimos 29 entre 4 y el cociente entero que es 6 se anota como la siguiente cifra de la raíz.

Multiplicamos: 6 x 46 = 276 y se resta a 295 295 - 276 = 19

g)

h) \(\sqrt{695} \) 26.3 \(295 \) 46 \(1900 \) \(\frac{-1569}{331} \)

√ 695 26.3 295 46 1900 52.3 33100 52.6

Si se quiere aproximar a decimales, se anota el punto decimal y se agrega un período de dos ceros. Sumamos: 6 + 46 = 52Dividimos: 19 / 5 = 3Se anota el 3 como siguiente cifra de la raíz Agregamos otro período de ceros y sumamos: 3 + 523 = 526

j)

V	695	26.36
•	295	46
	1900	523
	33100	52 66
	1504	

La operación se repite en la misma forma explicada anteriormente de e) a i). k)

- Y	
√ 695	26.36
295	46
1900	52.3
33100 1504	52 66
1504	

Esta es la raíz cuadrada aproximando hasta centésimos

I) Efectuamos la comprobación:

	CALCULANDO LA RAÍ da aproximando a centésimos:	
Sucesión de	b) 75 75 76 76 76 77 76 76 76 76 76 76 76 76 76	c) \sqrt{180}
√346	e) \qu	
-21 to estrict -2 to estrict -2 to estrict -1 to	termino no d = d	Encounts at $\frac{1}{6}$ definition of $\frac{1}{6}$ and $\frac{1}{6$
√5.63	√9.07 - = 2 grap d.3 = d	7 √32.1 08 and 1 and 2 and 1 and 2 and 3
	(2 5) = 0 1 (1) . u = \(\frac{1}{2} \)	soften so el promedio de los uatos de segundo rectángujo: de segundo rectángujo:
√85.43	k) √132.9	√200.5
5,427 5,427 3633 38339 1908	ado (8e 30 cm² .b + 2 + 2 + 2 + 2 commental (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	d) Como la base y la altura gel tercer recia igueles, în madida del teus lo un susci de área as 5.477 cm. aproximadamenta

RAÍZ CUADRADA (CONTEXTO GEOMÉTRICO)

¿Cuál es la medida del lado de un cuadrado de 30 cm² de área?

Para resolver este problema por medio de un contexto geométrico, aplicaremos el método babilónico.

Este método consiste en construir una sucesión de rectángulos equivalentes, cuya longitud de sus lados se aproximen a la figura de un cuadrado.

Ejemplo:

a) 5 es el mayor número entero, cuyo cuadrado es menor de 30.

5 es la base del rectángulo

Obtenemos la altura =
$$\frac{30}{5}$$
 = 6

Área 30 cm²

h = 6 cm

$$b = 5 cm$$

b) Calculamos el promedio de los lados del primer rectángulo:

base =
$$\frac{5+6}{2} = \frac{11}{2} = 5.5$$

Obtenemos la altura =
$$\frac{30}{5.5}$$
 = 5.454

Área 30 cm²

h = 5.454 cm

b = 5.5 cm

c) Obtenemos el promedio de los datos del segundo rectángulo:

base =
$$\frac{5.5 + 5.454}{2}$$
 = 5.477

Obtenemos la altura =
$$\frac{30}{5.477}$$
 = 5.477

Área 30 cm²

h = 5.477 cm

b = 5.477 cm

d) Como la base y la altura del tercer rectángulo son iguales, la medida del lado de un cuadrado de 30 cm² de área es 5.477 cm. aproximadamente.

 Lee y representa, gráfica y algebraicamente, relaciones lineales y cuadráticas. Aprendizaje esperado:

Relaciones de variación cuadrática

Una función cuadrática es una variable de una función polinómica definida por: $y = ax^2 + bx + c$ (siendo a diferente a 0). La gráfica de una función cuadrática es una parábola, un tipo de curva de 2 dimensiones.

Al igual que con las sucesiones numéricas, para conocer la regla que determina dicha variación basta con encontrar la diferencia entre los términos de cada posición:

0

Como puede apreciarse, la diferencia entre los números es de 4, por lo tanto solo se necesita sumar esa misma cantidad al último término. El número que continuaría la sucesión sería (23 + 4) = 27.

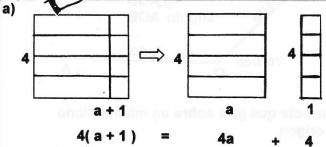
Pero, ¿qué pasa cuando, en una sucesión como la siguiente, no existe una diferencia clara al primer intento?

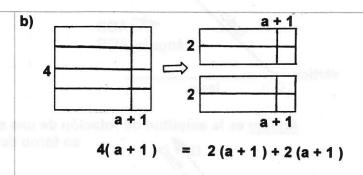
Se procede a obtener un segundo nivel de diferencias: diferencia de diferencias. Su expresión sería: x^2

entre cada uno, de esa manera, si a 11 se le suma 2, se obtiene 13, y si al último término de la sucesión (36) se le Como puede apreciarse, la diferencia de diferencias reveló que entre el primer nivel de diferencias hay 2 números suma esa diferencia: 36+13 = 49. 49 es el siguiente término de la sucesión. A esto se le llama variación cuadrática

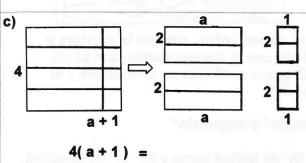
46 TRIMESTRE 1

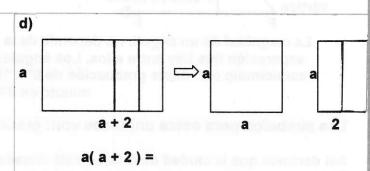
1) 5, 11, 19, 29, 41,	. 2) 2, 6, 12, 20, 30,	
	1.00	aciones de variación es divir
	enters of the state of the stat	moral material state of the second state of the second sec
4) -2, 1, 6, 13, 21,	5) 3, 8, 13, 18, 23,	
others and the state of the sta		
Employee States	de al, por la familia e de se fecuella una rela-	on and a straight and services the contraction of the services
7) 1, 2, 4, 7, 11,	8) 1, 5, 12, 22, 35,	9) 3, 5, 7, 9, 11,
	38.20	CAN BE DE LE CONTROL OF THE CONTROL
	भारतसम्बद्धाः स्थापसम्बद्धाः स्थापमान्यान्त्राति का स्थापनान्त्राति स्थापना	provestiti od lavin ubribpat nu renestdo a rue vong
10) 3,–3,–13,–27,–45,	., 11) 4, 16, 36, 64, 100,	12) 1, 1, 2, 3, 5,
	S	
ETHERE I	e groupe of primer most on dispensions have a primer most on dispension may be a first or an extension of the contraction of th	prede agreciatre, la diferencia de diferencia revelo que menor de africa de se produce de africa de se portuga a la compansión

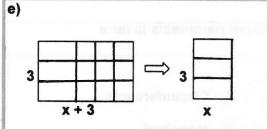

Resuelve las siguientes sucesiones, escribe los siguientes 10 términos y define la diferencia entre los mismos.

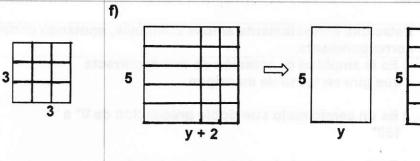

	-, 2) 4, 9, 8, 12, 14, ——————————————————————————————————	3) 2, 8, 18, 32, 50,
4) 0.5, 1, 1.5, 2, 2.5,	5) 100, 50, 25, 12.5, 6.25,	6) -3, -6, -9, -12, -15,
	18 (18:20)	ob cartahasus editarg st esta ndoeluden athonogia e.
7) 1, 2, 6, 24, 120,	8) 2, 1, 4, 11, 22,	9) 6, 15, 18, 45, 66
10) 1, 16, 81, 256, .625,	11) L, M, M, J, V,	12) 1, 4, 1, 5, 9,

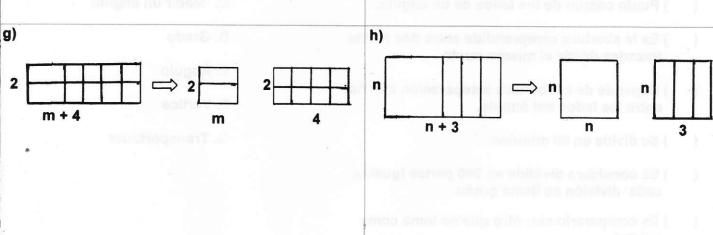
USO DE MODELOS GEOMÉTRICOS

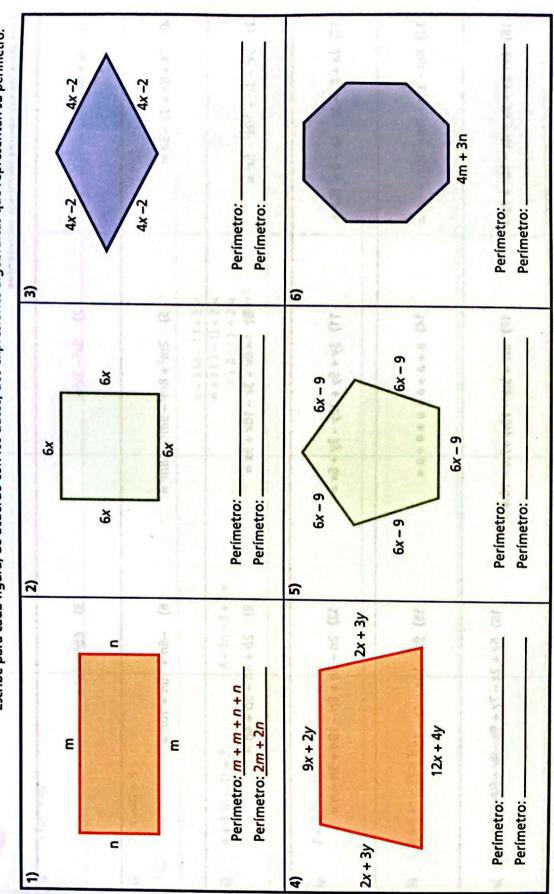

El siguiente modelo geométrico permite establecer algunas identidades algebraicas sencillas:

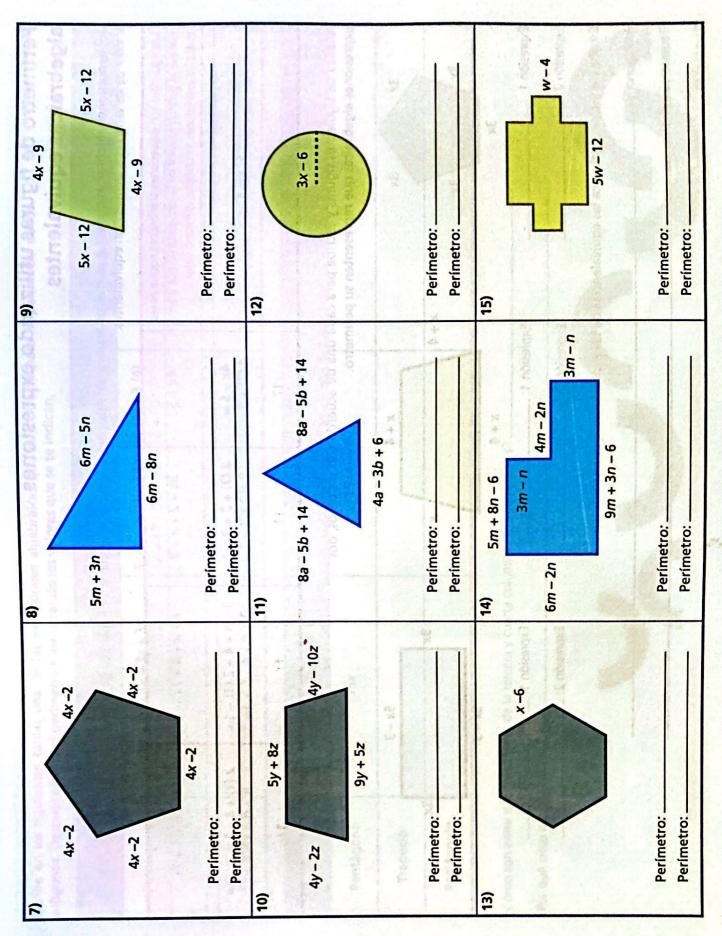

Ejemplos:






1. Anota la identidad algebraica que representa el modelo geométrico que se indica en cada caso:

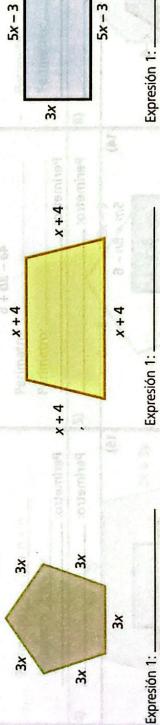




Cuando se tienen dos expresiones equivalentes para el perímetro, es posible obtener una a partir de la otra utilizando operaciones algebraicas.

Escribe para cada figura, de acuerdo con los datos, dos expresiones algebraicas que representen su perímetro:

98



Perímetro de figuras utilizando expresiones algebraicas equivalentes

Dos expresiones algebraicas que están escritas de manera distinta, pero que tienen el mismo valor numérico, sea cual sea el valor de las variables o literales, son equivalentes.

Las siguientes son expresiones algebraicas equivalentes, porque al sustituir el valor de la incógnita (x) por 3 en todas las expresiones se obtiene el mismo valor.	4x + 5	3x+2+x+3	x + x + 4 + 2x + 1	2x-6+1+2x
Si x = 3	4x + 5 = $4(3) + 5 =$ $12 + 5 =$ 17	3 (3) + 2 + 3 + 3 = 9 + 2 + 3 + 3 = 17	3+3+4+2(3)+1= 3+3+4+6+1= 17	2 (3) + 6 - 1 + 2 (3) = 6 + 6 - 1 + 6 = 17

Analiza las siguientes figuras y escribe para cada una de acuerdo con los datos, dos expresiones algebraicas que representen su perímetro.

3×

Expresión 2:

Escribe de forma algebraica las equivalencias de las expresiones que encontraste:

Expresión 2:

Expresión 2:

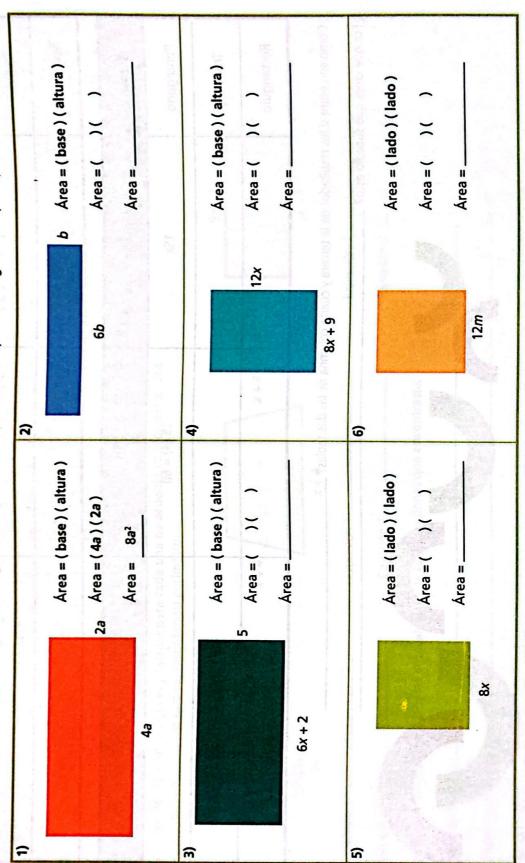
Pentágono:

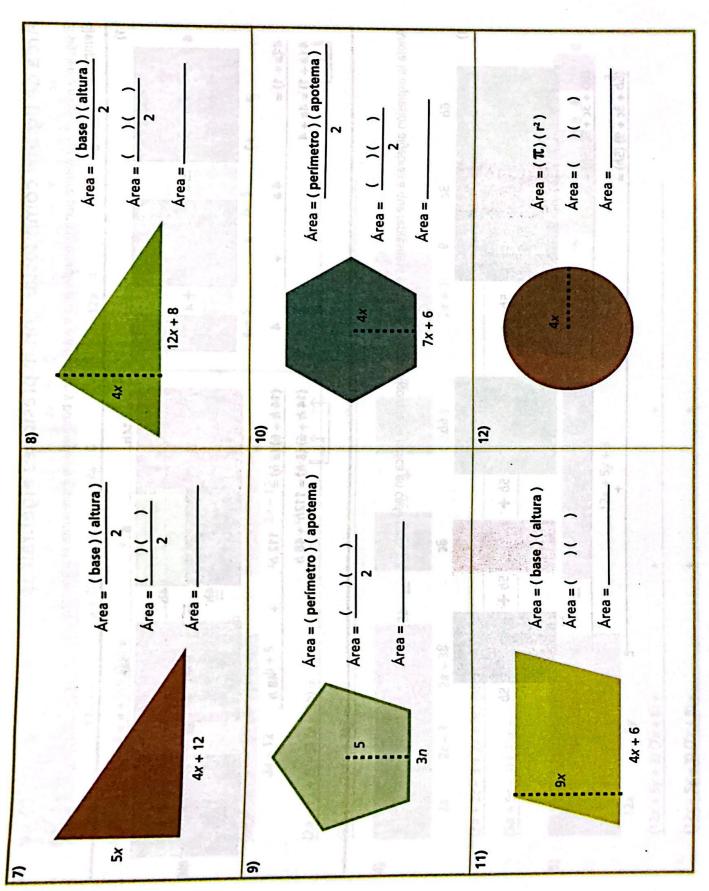
Escribe en las siguientes tablas una de las expresiones algebraicas que encontraste para el perímetro de los polígonos. Después calcula el perímetro considerando los valores que se te indican.

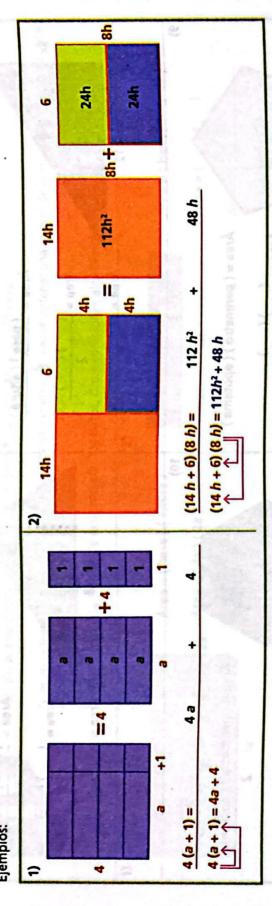
Poligono	expresión algebraica (1)	Obtén el perimetro de la figura si $x = 4$	Obtén el perimetro de la figura si $x = 5$
Pentágono	3x + 3x + 3x + 3x + 3x	3 (4) + 3 (4) + 3 (4) + 3 (4) + 3 (4) 12 + 12 + 12 + 12 + 12 = 60	Sprace Comment
Trapecio	andrea independent of the contract of	OCI IS TOD OF THE CAN HOLD BE SHOULD BE ON THE	T is \$10 decreases that it earns a
Rectángulo	sed) wasnA d	(courtle) (easing = 0	And April 1997

	1 = 6010		
Poligono	expresión algebraica (2)	Obten el perimetro de la Tigura si $x = 4$	Obten el perimetro de la tigura si $x = 5$
Pentágono	15x	15 (4) = 60	
Trapecio	ad a sond Area =	Canufa (Canufa)	
Rectángulo	13x Area		91A

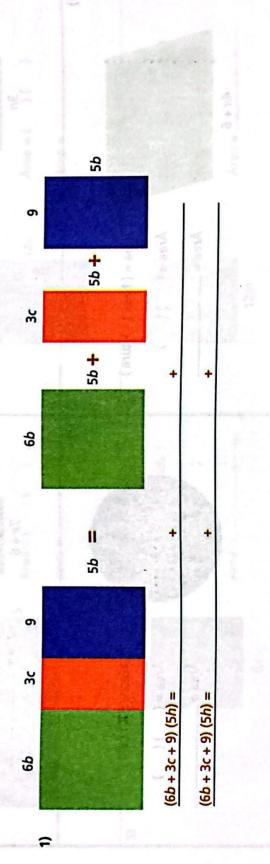
¿Cómo son entre sí los resultados de la tercera y cuarta columna de las dos tablas?

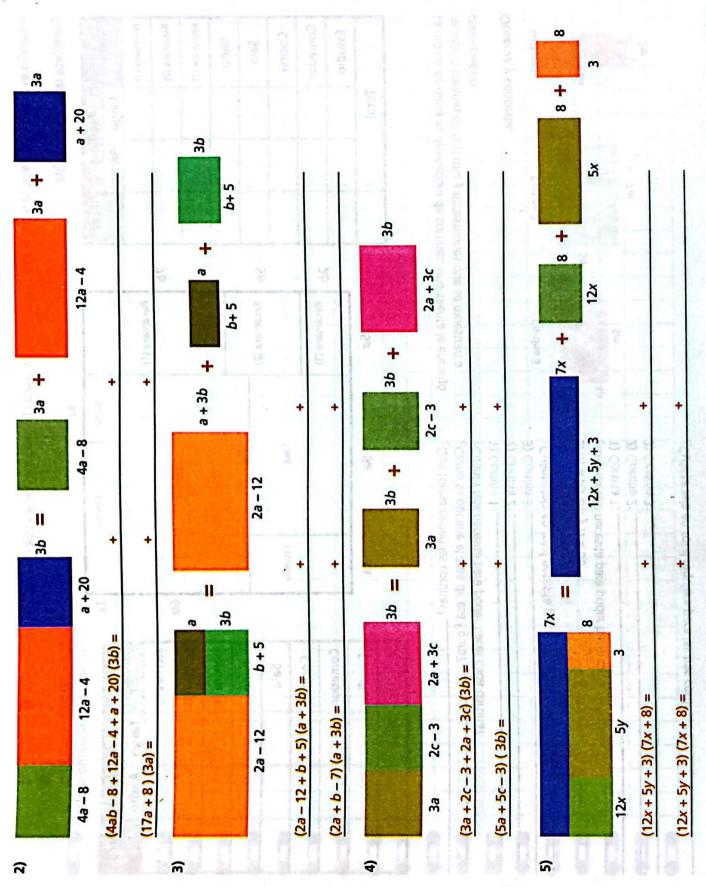

¿Por qué crees que sucedió esto?




Área de figuras con expresiones algebraicas

El área (superficie) de una figura se ha definido como el espacio que queda encerrado entre los límites de esa figura. Para calcular el área de algunas de las figuras geométricas utilizamos una fórmula. Cuando se tienen dos expresiones equivalentes para el área, es posible obtener una a partir de la otra utilizando operaciones algebraicas.


Escribe para cada figura, de acuerdo con los datos, dos expresiones algebraicas que representen su área:



Anota la expresión algebraica que representa el modelo geométrico que se indica en cada caso:

Alejandro es arquitecto y necesita saber el área que ocupa cada una de las secciones de la siguiente casa, observa el siguiente croquis.

Completa la siguiente tabla: Si a = 80 cm y b = 150 cmMedidas Recámara (2) Recámara (3) Recámara (1) Nombre Comedor Estudio Baño Cocina Sala 29 99 Estudio Comedor 99 Sala Baño 39 Recámara (1) Recámara (2) Recámara (3) 16 29 26 Area Completa la siguiente tabla: Largo Ancho Medidas Total Recámara (1) Recámara (2) Recámara (3) Nombre Comedor Cocina Estudio Baño Sala

Area Largo Ancho Total

> La mamá de Alexa es diseñadora de cortinas, una clienta le encargó realizar 3 cortinas de la forma y dimensiones que se muestran a continuación:

47 Cortina 3 5m 22 Cortina 2 77 Observa y contesta: 9 Cortina 1 2m

Cuánta tela necesita para poder hacer cada cortina? ¿Cómo se obtiene el área de esa figura? Qué forma tienen las cortinas? 1) Cortina 1:_

2) Cortina 2: _ 3) Cortina 3: _

¿Cuánta tela en total necesita para las tres cortinas? _

¿Cuánta tela necesita para poder hacer cada cortina?_ Si m = 35 cm y n = 301) Cortina 1:_ 2) Cortina 2:

3) Cortina 3:

¿Cuánta tela en total requiere para las tres cortinas? _

TRIMESTRE 2

106

ONES

nide

ener

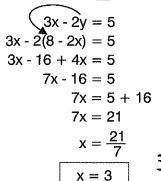
s, se

total

RESOLUCIÓN DE UN SISTEMA DE DOS ECUACIONES DE PRIMER GRADO

MÉTODO DE SUSTITUCIÓN

Este método consiste en despejar una variable en una de las ecuaciones y sustituir esta expresión resultante en la otra ecuación:


1)
$$2x + y = 8$$

2)
$$3x - 2y = 5$$

Despejamos la variable y en la ecuación (1)

$$2x + y = 8$$
$$y = 8 - 2x$$

Sustituimos el valor de y en la ecuación (2)

La solución del sistema es

$$x = 3$$
 $y = 2$

Realizamos la comprobación:

En (1)	En (2)
2x + y = 8 2(3) + 2 = 8	3x - 2y = 5 3(3) - 2(2) = 5
6 + 2 = 8	9 - 4 = 5
8 = 8	5 = 5

Ahora sustituimos este valor en la ecuación:

$$y = 8 - 2x$$

$$y = 8 - 2(3)$$

$$y = 8 - 6$$

Resuelve los siguientes sistemas de ecuaciones por el método de sustitución:

a) 1)
$$2x + y = 7$$

b) 1)
$$x + 2y = 8$$

2)
$$-x + 3y = 17$$

MÉTODO DE SUSTITUCIÓN

c)
$$x + y = 8$$

 $x - y = 4$

d)
$$5x + 2y = 9$$

 $3x + (y) = 5$

e)
$$2x - y = 1$$

 $x + y = 5$

f)
$$(x)^2 - y = 3$$

 $2x + 4y = 12$

g)
$$(x) + y = 4$$

2x - 3y = 3

h)
$$(x) 2y = 10$$

 $4x + 4y = 4$

MÉTODO DE SUSTITUCIÓN

$$3x - 2y = -9$$

 $x + y = -8$

j)
$$5x + 3y = 11$$

 $4x + 2y = 8$

(a)
$$2x + y = 7$$

 $3x + 2y = 12$

1)
$$-3x + 2y = 2$$

 $2x - 2y = -4$

m)
$$6x - 5y = 8$$

 $2x + 4y = 14$

n)
$$4x - 3y = -2$$

 $2x + 2y = -8$

MÉTODO DE SUSTITUCIÓN

o)
$$x + 3y = 13$$

 $2x - 2y = 10$

p)
$$2x + 2y = -4$$

 $3x - y = -18$

q)
$$3x - 6y = 6$$

 $2x + 4y = 12$

r)
$$3x - y = 13$$

 $2x + 2y = 22$

s)
$$3x - 6y = 54$$

 $5x + 4y = 62$

MÉTODO DE REDUCCIÓN (SUMA Y RESTA)

Este método consiste en eliminar una incógnita por medio de una suma o una resta.

- 1) 2x + y = 7
- 2) 2x y = 1

$$+ \underbrace{\begin{cases} 2x + y = 7 \\ 2x - y = 1 \end{cases}}_{4x = 8}$$
$$4x = 8$$
$$x = \frac{8}{4}$$

► El valor de x es 2, para obtener el valor de y, sustituimos el valor de x en cualquiera de las dos ecuaciones:

1)
$$2x + y = 7$$

$$2(2) + y = 7$$

$$4 + y = 7$$

$$x = 2$$
 $y = 3$

2) 2x - y = 1

$$2(2)-y=1$$

$$4-y = 1$$

$$-y = -3$$

$$(-1) - y = -3 (-1)$$

Resuelve los siguientes sistemas de ecuaciones por el método de reducción.

a)
$$4x + 5y = 21$$

 $-4x + 8y = -8$

b)
$$3x + 2y = 23$$

$$2x - 2y = 2$$

c)
$$2x - 4y = -2$$

 $3x + 4y = 17$

d)
$$x + 2y = 8$$

$$-x + 3y = 17$$

MÉTODO DE REDUCCIÓN (SUMA Y RESTA)

f)

e)
$$3x + 5y = 17$$

 $3x + 2y = 14$

el valor de y
$$3x + 5y = 17$$

$$3x + 5y = 17$$

 $-3x - 2y = -14$

$$3x + 5(1) = 17$$

 $3x + 5 = 17$

$$-3x - 2y = -14$$

0 3y = 3

$$3x = 17 - 5$$

 $3x = 12$

$$x = \frac{12}{3}$$

$$x = 4$$

$$y = 1$$

$$3x - 4y = 5$$

 $3x + y = 10$

2x + 3y = 232x + y = 13

g)
$$5x + 4y = 22$$

 $-x + 4y = 10$

i)
$$2x - 3y = -8$$

$$5x - 3y = 7$$

$$3x + y = 9$$

$$3x + 4y = 18$$

MÉTODO DE REDUCCIÓN (SUMA Y RESTA)

$$4x - 3y = 6$$

 $3x + 2y = 13$

ONES

Sustituimos el valor de x

$$2(4x - 3y) = 2(6)$$

 $3(3x + 2y) = 3(13)$

$$4x + 3y = 6$$

 $4(3) - 3y = 6$
 $12 - 3y = 6$

$$8x - 6y = 12$$

$$9x + 6y = 39$$

$$17x 0 = 51$$

$$12 - 3y = 6$$

 $-3y = 6 - 12$
 $-3y = -6$

$$3y = 6$$
$$y = \frac{6}{3}$$

$$x = \frac{51}{17}$$

$$x = 3$$

 $y = \frac{1}{3}$ y = 2

(-1) -3y = (-6) (-1)

La solución del sistema es:

y = 2

1)
$$5x - 2y = -3$$

 $-2x - y = -6$

m)
$$-3x - 3y = -18$$

 $4x - 6y = 14$

n)
$$2x + 4y = 20$$

 $4x - 2y = 10$

0)
$$3x + y = -9$$

 $4x - 3y = 1$

p)
$$x - 2y = 10$$

 $4x + 4y = 4$

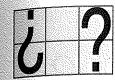
MÉTODO DE REDUCCIÓN (SUMA Y RESTA)

q)
$$4x + 3y = 32$$

 $5x - 2y = 17$

r)
$$4x - 4y = 8$$

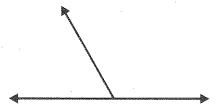
 $2x - 3y = 3$


s)
$$5x + 6y = 28$$

 $4x - 2y = 2$

t)
$$4x - 3y = 17$$

 $3x + 4y = 19$

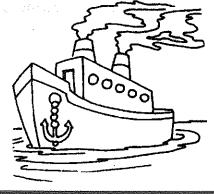

u)
$$6x + 3y = 33$$

 $5x - 5y = 5$

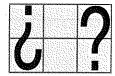
v)
$$2x + 4y = 0$$

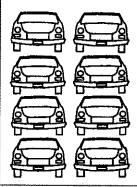
 $5x - 6y = -16$

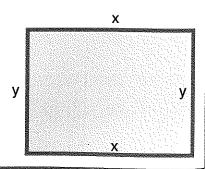
a) Encontrar dos números cuya suma sea 49 y su diferencia sea 23.

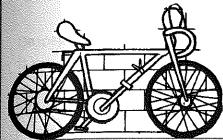

b) Dos ángulos sumplementarios suman 180°. Si la diferencia de los ángulos es de 90°, ¿ Cuánto mide cada ángulo?

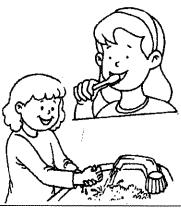
c) Se tienen \$ 1500 en 19 billetes de \$ 50 y \$ 100. ¿ Cuántos billetes son de \$ 50 y cuántos billetes son de \$ 100 ?

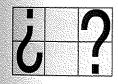

d) Un barco navega con una trayectoria de 4x + 3y = 11, otro barco navega con una trayectoria de 2x-3y = 19. ¿En qué punto del plano se encontrarán los dos barcos?


e) En un corral se tienen faisanes y conejos. Si hay 35 cabezas y 94 patas, ¿ cuántos faisanes y cuántos conejos se tienen ? (problema chino, 200 años a.C.)


f) La suma de dos números es de 75, y su diferencia es 34.8, ¿ Cuáles son esos números ?

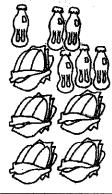

g) Una fábrica de automóviles produce mensualmente 625 unidades, (estándar y automático); la diferencia entre autos estándar y automático es de 55 unidades. ¿Cuántos autos de cada tipo se producen en un mes?


h) El perímetro de un terreno rectangular es de 70 m. El triple del largo menos el doble del ancho es igual a 30 m. ¿ cuáles son las dimensiones del terreno?


i) Se venden bicicletas y triciclos. Jorge le pregunta a Raúl: ¿ Cuántas bicicletas y cuántos triciclos hay, si en total conté 50 pedales y 64 ruedas ?

j) Karla pagó \$ 41 por una pasta de dientes y dos jabones. Bety compró dos pastas de dientes y tres jabones por \$ 74. ¿ Cuánto cuesta cada jabón y cada pasta ?

k) El triple de la suma de dos números es 36. El doble del primer número sumado con el triple del segundo número es igual a 29. ¿ Cuáles son esos dos números ?

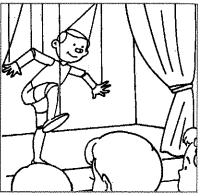


ncia

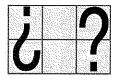
ies?

al a

l) Cinco tortas y seis refrescos cuestas \$184. Siete refrescos y seis tortas cuestán \$ 219. ¿ Cuál es el precio de una torta y un refresco ?



m) Un par de zapatos y un suéter cuestan \$ 665, si los zapatos cuestan \$ 85 más que el suéter, ¿ Cuánto cuestan los zapatos ?



n) En una función de teatro escolar se vendieron 150 boletos, unos a \$ 30 y otros a \$ 20, ¿Cuántos boletos se vendieron de cada precio si el total de la venta fue de \$ 3 500 ?

o) Si la diferencia de un número con el triple de otro es 9, y la suma del primero con el doble del segundo es de 19, ¿ Cuáles son esos números ?

p) Un granjero vendió 52 pollos de color blanco y café en \$ 3 390. Si recibió \$ 60 por cada pollo blanco y \$ 70 por cada pollo café. ¿ Cuántos pollos de cada color vendió?

GRÁFICAS DE UN SISTEMA DE ECUACIONES 2 X 2

Estas ecuaciones forman un sistema de dos ecuaciones de primer grado con dos incógnitas.

1)
$$x + y = 10$$

2)
$$x - y = 2$$

Despejamos a 🏈 en las dos ecuaciones:

1)
$$x + y = 10$$

Īχ	y = 10 - x
3	7
4	6
5	5
6	4

$$y = 10 - 3 = 7$$

$$y = 10 - 4 = 6$$

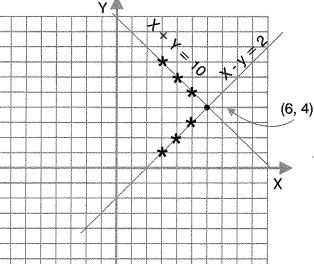
$$y = 10 - 5 = 5$$

$$y = 10 - 6 = 4$$

2)
$$x - y = 2$$

se

de


$$x - 2 = y$$
$$y = x - 2$$

X	y = x - 2
3	1
4	2
5	3
6	4

$$y = 3 + 2 = 1$$

 $y = 4 - 2 = 2$
 $y = 5 - 2 = 3$

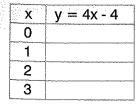
y = 6 - 2 = 4

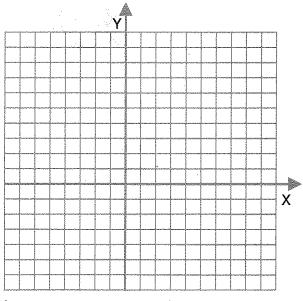
3. Representación gráfica.

Observa que el punto donde se cortan las rectas es (6, 4)

Como el sistema tiene una sola solución: x = 6, y y = 4se dice que el sistema es CONSISTENTE.

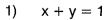
Resuelve gráficamente el siguiente sistema de ecuaciones.


a)


2)
$$4x - y = 4$$

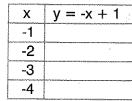
De (1) y = 8 - 2x

De (2) y = 4x - 4

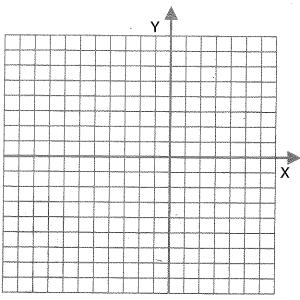

Las rectas que representan las ecuaciones (1) y (2) se cortan en el punto

La solución es:

$$x = y =$$


GRÁFICAS DE UN SISTEMA DE ECUACIONES 2 X 2

b)


2)
$$-2x + y = 7$$

De (1) y = -x + 1

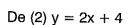
De (2)
$$y = 2x + 7$$

(*************************************	
Х	y = 2x + 7
-0	3333011
-1	an mana (migist diversion and an ana an
-2	765633
-3	

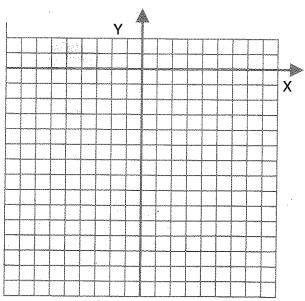
Las rectas que representan las ecuaciones (1) y (2) se cortan en el punto

$$x = y =$$

c)


1)
$$x + y = -8$$

2)
$$2x - y = -4$$


De (1) y = -x - 8

Χ	y = -x - 8
1	The state of the s
2	And the second s
3	
4	manufacture des de la fill (1900 E E E E E E E E E E E E E E E E E E

Х	y = 2x + 4
-3	
-4	
-5	
-6	

Las rectas que representan las ecuaciones (1) y (2) se cortan en el punto

ECUACIONES

Eje 1: Número, álgebra y variación.

Aprendizajes esperados:

 Resuelve problemas mediante la formulación algebraica de sistemas de dos ecuaciones lineales con dos incógnitas.

Sistemas de ecuaciones lineales de 2x2

Un sistema de dos ecuaciones es la reunión de dos ecuaciones con dos incógnitas cada una.

dos ecuaciones.

alor La solución de este sistema e las es:
$$x = 2$$

$$2x + 3y = 13$$
 $4x - y = 5$
 $2(2) + 3(3) = 13$ $4(2) - 3 = 5$
 $4 + 9 = 13$ $8 - 3 = 5$
 $13 = 13$ $5 = 5$

Porque al sustituir el valor de las incógnitas en las dos

ecuaciones la igualdad se mantiene.

Comprueba si los valores de las incógnitas son solución del sistema.

1)
$$x+3y=6$$
 $x=3$
2) $5x-2v=13$ $v=1$

1)
$$x+3y=6$$
 $x=3$
2) $5x-2y=13$ $y=1$ so the property of the

1)
$$3x + 4y = 8$$
 $x = 4$
2) $8x - 9y = -77$ $y = 5$

1)
$$3x+4y=8$$
 $x=4$
2) $8x-9y=-77$ $y=5$

Un sistema de ecuaciones puede tener una solución, una infinidad de soluciones, o no tener ninguna solución esto depende de si las rectas que representan a las ecuaciones se cortan, coinciden en una sola recta, o son paralelas. Ejemplos:

a) x+y=10b) x-y=21) Resolver gráficamente el sistema:

x-y=2

a) Despejar a "y

10	
~:	
(1)	
_	
_	
_	
_	
_	
•-	
_	
~	
_	ж.
_	-7
-	
•	
\sim	
ă	
ecuaciones	
dos ec	
dos	
dos	
dos	
dos	
dos	
las dos	
las dos	
las dos	
las dos	
dos	
las dos	
en las dos	
en las dos	
las dos	

b) Tabular las dos funciones obtenidas:

y = 10 - xa) x+y=10

$$\begin{array}{c}
 x - y = 2 \\
 -y = 2 - x
 \end{array}$$

9

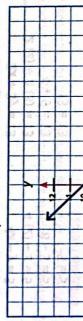
(x,y)	(0,-2)	(3,1)
y=x-2	y=0-2	y=3-2
×	62 (\$ 0)71140	8

(3,7)

y = 10 - 3

m

(0, 10)


y = 10 - 0

0

(x,y)

y = 10 - x

c) Representación gráfica: Localizar los pares ordenados para obtener las dos rectas



que se cruzaron en:

d) La solución del sistema es el punto donde las dos rectas se cruzan, observa e) Comprobar los valores obtenidos en las dos ecuaciones

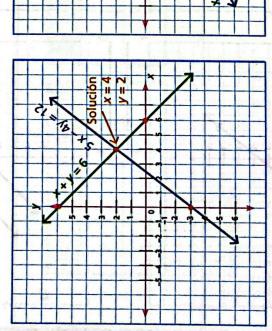
$$x + y = 10$$

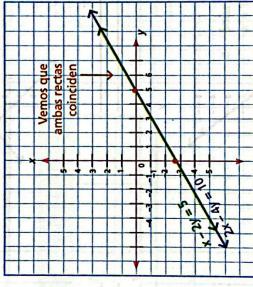
6 + 4 = 10
10 = 10

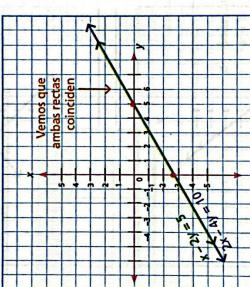
9 = X Solución

Clasificación de sistemas de ecuaciones

Sistemas compatibles determinados


El sistema de ecuaciones tiene una única solución, es decir, las dos rectas se cortan en un punto.


Sistema compatible indeterminado


El sistema de ecuaciones tiene infinito número de soluciones, es decir, las dos rectas representan la misma línea.


Sistemas incompatibles indeterminado

El sistema no tiene solución, es decir, las rectas no se cruzan, son paralelas.

1)
$$x-2y=5$$

2) $2x-4y=10$

5x - 4y = 12x+y=6

F7

La ecuación 1 es la mitad de la ecuación 2.

54 TRIMESTRE 1

Observa la página y anota si corresponde a un sistema de ecuaciones compatible determinado, compatible indeterminado o incompatible.

Página 57 de 60

Solución de sistemas de ecuaciones por el método gráfico

Resuelve gráficamente los siguientes sistemas de ecuaciones:

1) x-y=1x+y=7

a) Despejar y en 1

Representación gráfica

v

Despejar y en 2

Desposed year 2

x-y=1

x+y=7

×= 1

(x,y)

y=7-x

(x,y)

y=x-1

×

9

0

0 ×

e) Comprobación

d) Solución x=1

V=7

c) Representación gráfica		d) Solución x =
	(x,y)	
Despejar y en 2 x + 3y = -8 y = -8	x 0 L	
	(X,Y)	
г. П	# X	e) Comprobación
a) Despejar y en 1 $x-2y=10$ $y=$	b) Tabular o	a de la companya della companya della companya de la companya della companya dell

c) Representación gráfica		A section out of a section up 2	7 4 3 4 1 5 1 0 1 2 3 4 4 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 6		\$	Set a new section and a section of the section of t	d) Solución xamermana el avice de xamerman el x	(135.77) 8 = (4.05.30) 8 = (4.		
Despejar y en 2 $7x - y = -16$	y = version and the second s	1+x0 (2 2+x2 (5		0 1 T - 55? = 2 2 2	X = 137 - X(1)	88-55F # X	× × × × × × × × × × × × × × × × × × ×	Consultation,	244 = (82) = 542 8 sacapuntas = 6 (82) = 542 8 sacapuntas = 6 (812) = 542 7 gonus = 9 (512) = 5132	Daniel compró:
a) Despejar y en 1 Despejar y en 1 $5x-3y=0$	y = Y = Y = Y = Y	SELBY(4+48) b) Tabular 000=48+x8	$x \qquad y = (x,y)$	0	1		e) Comprobación	2) 200 KC30	St. satesuo setmuosuss nu Srt. satesuo algel nu	

æ